Pricing Models for Non-Agency RMBS: Approaches and Model Risks

Incisive Training
October 25, 2011
Dr. Shihua Lu
Senior Director
Freddie Mac
Disclaimer

The views expressed in this presentation are those of the author and do not necessarily reflect the position of Freddie Mac.

The examples, methods, approaches, and explanations are intended to reflect perceived best practices and do not represent methods or approaches as implemented or used by Freddie Mac.
Agenda

• An introduction to non-agency RMBS securities
• Approaches of mortgage pricing: structural vs. reduced-form
• Modeling tranche cash flows
• Assessing tranche values from cash-flow estimates
• Model validation and model risk
A refresher on non-agency RMBS securities

- Tranches of a static pool of mortgage loans
 - Subprime
 - Alt-A
 - Option ARM
 - Prime jumbo

- Senior/subordinate structure to create credit enhancement
 - Losses directed to subordination first
 - Other forms of CE: excess spreads; overcollateralization; MI

- Waterfall rules on allocation of principal and interest payments across senior and subordination tranches
 - Shifting principal payments toward senior tranches
 - Triggers based on credit performance of collateral
An simple illustration

Underlying Collateral: mortgage loans

Interest payments

Principal payments (scheduled, prepayment, recovery)

Waterfall rules

Senior tranches

Subordination tranches
Subprime ABX AAA prices

Source: BofA Merrill Lynch Global Research, Markit
Approaches to mortgage pricing

- Risks of mortgage
 - Prepayment risk
 - Default risk
 - Spread risk

- Main Drivers
 - Interest rate
 - Housing price
Structural approach (option-pricing models following Black-Scholes-Merton model, e.g., Kau and Keenan 1995)

- Prepayment: American call options on the mortgage
- Default: American put options on the underlying asset
- Endogenous decisions on prepayment and default as efficient execution of options
Structural approach (option-pricing models) – a quick summary

- The value of a mortgage is $V(t, R(t), H(t))$
 - $R(t)$ – interest rate process
 - $H(t)$ – house price process
 - Both following SDEs

- Assuming that $H(t)$ is a tradable asset, and derive the fundamental PDE for the mortgage value under no arbitrage
 - The boundary conditions are given by the optimal decision rules on exercising the prepayment and default options
Approaches to mortgage pricing

Difficulties in applying the structural approach:

- Borrowers not executing options efficiently
- Housing market is not efficient
- Not able to use forward simulation as decisions are endogenous
- Backward solution often computationally intensive (especially in the presence of path dependency)
- Not conducive for estimation from empirical data
Reduced form pricing model:

- Prepayment and default behavior estimated from empirical data
- Following the doubly stochastic default model framework (Lando 1998 and Duffie and Singleton 1999)
- Given prepayment and default behavior, mortgage value can be obtained using forward pricing
- This is the approach commonly adopted in practice
Doubly stochastic default:

τ: time of default

λ(t): default density at t

- λ(t)dt is the probability of default between t and t+dt: Prob{τ≤t+dt| τ>t}, or
- the rate of decline of survival probability: dS(t) = - λ(t)S(t)dt

λ(t) is stochastic, conditional on a path of λ(t) the conditional survival probability is

\[\text{Pr} \{ \tau > t | \lambda(u) : 0 \leq u < t \} = \exp[-\int_0^t \lambda(u)du] \]

The unconditional survival probability is obtained by simply taking expectation over λ(t):

\[\text{Pr} \{ \tau > t \} = E \exp[-\int_0^t \lambda(u)du] \]
Doubly stochastic default:

In the case of mortgage:

\(\lambda(t) \) is simply \(MDR(t) \), often assumed to be constant between \(t \) and \(t+1 \)

MDR(t) is stochastic, modeled as driven by interest rate and house price

For a given interest rate and house price path, the conditional survival probability is simply

\[
S(t \mid R(u), H(u) : 0 \leq u < t) = \prod_{i=0}^{t-1} (1 - MDR_i)
\]

The unconditional probability of survival can be obtained by taking average over the interest rate and house price paths
Reduced form pricing model:

Under the doubly stochastic default framework, consider a zero coupon bond paying $1 at time T:

Risk-free bond price is

$$\delta(t,T) = E_t^Q[\exp(-\int_t^T R(u)du)]$$

Bond price with default risk (assuming zero recovery):

$$\delta^d(t,T) = E_t^Q[\exp(-\int_t^T R(u)du) \cdot I(\tau > T)] = E_t^Q[\exp(-\int_t^T R(u) + \lambda^*(u)du)]$$
Approaches to mortgage pricing

Reduced form pricing model:

Application of this approach to mortgage valuation (e.g., Kau, Keenan, and Smurov 2006, and Liao, Tsai, and Chiang 2008)

Competing risks: prepayment and default hazard

\[\lambda(t) = \lambda_p(t) + \lambda_d(t) \]

Theoretically, a high prepayment hazard is associated with a low default hazard and vice versa.

Mortgage value = Value of prepayments + Values of recovery from defaults + Value of scheduled payments if no prepayment or default
Approaches to mortgage pricing

Reduced form pricing model:

\[V(t) = E_t^Q \left[\int_t^T M(u) \exp\left[-\int_t^u \left(R(s) + \lambda_p^*(s) + \lambda_d^*(s) \right) ds \right] \lambda_p^*(u) du \right] \]

\[+ E_t^Q \left[\int_t^T w(u)M(u) \exp\left[-\int_t^u \left(R(s) + \lambda_p^*(s) + \lambda_d^*(s) \right) ds \right] \lambda_d^*(u) du \right] \]

\[+ E_t^Q \left[\int_t^T Y(u) \exp\left[-\int_t^u \left(R(s) + \lambda_p^*(s) + \lambda_d^*(s) \right) ds \right] du \right] \]

M(t): scheduled UPB

w(t): recovery ratio

Y(t): scheduled principal and interest payment
Modeling tranche cash flows

Risk drivers:

• Interest rate paths: using term structure models

• House price paths: modeling housing price diffusion

Collateral cash flows:

• Scheduled payments

• Prepayment at time t,

\[\prod_{i=1}^{t-1} (1 - \text{SMM}_i - \text{MDR}_i) \cdot \text{SMM}_t \cdot \text{ScheduledUPB}_t \]

• Default at time t

\[\prod_{i=1}^{t-1} (1 - \text{SMM}_i - \text{MDR}_i) \cdot \text{MDR}_t \cdot (1 - \text{Severity}_t) \cdot \text{UPB}_{t-1} \]
Modeling tranche cash flows

Tranche cash flows:

- Waterfall structure (Intex)
- Servicer advances

P&I advance rate by delinquency status

Source: Loan Performance and Freddie Mac

- MI haircuts
Assessing tranche values from cash-flow estimates

- Risk-neutral versus actual default probability
 - The difference reflect the risk premium on default risk
 - In mortgage pricing, the risk premium is typically captured by an optional-adjusted spread (OAS): A constant spread over the reference curve
 - Trading volume is thin – very little information on market prices
 - Pricing often based on capital cost: potential large variations
Model validation and model risk

Model validation

- Risk-based approach
- Identify model risks associated with model use
- Assess existing mitigating factors and design validation work for each model risk
- Key challenges:
 - Lack of pricing data
 - Regime change post-housing crisis
 - Foreclosure timeline extensions
 - Modifications
 - Strategic defaults
Model validation

- Core models (e.g., prepayment, default, and severity)
 - Model theory
 - Functional form
 - Variable selection
 - Sample selection
 - Estimation/calibration methods

- Model use (e.g., business transactions, financial reporting)
 - Model dependency
 - Data integrity
 - System implementation
Default model: potential bias due to foreclosure timeline extension and modifications

A hypothetical example of default prediction
Model validation and model risk

Default model validation

• Evaluating key assumptions:
 o The effect on default of foreclosure timeline extension
 ▪ Any effect on curing
 o The effect of modification program
 ▪ Treatment-effect approach: comparing modified loans with unmodified loans
 ▪ Compare performance of modified loans to other delinquency statuses
 ▪ What about effects on ultimate losses?
Default model validation

- Back-testing using adjusted “actual” default rates
 - What would be default rates without foreclosure timeline extension and modifications?
 - Using historical roll rates

- Scenario analysis on default timing
 - Default timing is potentially important for structured products
 - Senior tranches tend to benefit from frontloading defaults and subordination tranches tend to benefit from delay of defaults
Model validation and model risk

Default model validation:

• Benchmarking against alternative models
 o Transition model vs a single-state default model
 o Simple roll rates model

• Benchmarking against dealer models

Subprime cum defaults

<table>
<thead>
<tr>
<th>Vintage</th>
<th>JPM</th>
<th>CITI</th>
<th>BC</th>
<th>BOA</th>
</tr>
</thead>
<tbody>
<tr>
<td>2004</td>
<td>53</td>
<td>36</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>2005</td>
<td>76</td>
<td>59</td>
<td>69</td>
<td></td>
</tr>
<tr>
<td>2006</td>
<td>84</td>
<td>70</td>
<td>77</td>
<td>82</td>
</tr>
<tr>
<td>2007</td>
<td>84</td>
<td>65</td>
<td>76</td>
<td>86</td>
</tr>
</tbody>
</table>

Source: JP Morgan, Citi, Barclay, and BoA
Model validation and model risk

Prepayment model: regime change after the housing crisis

<table>
<thead>
<tr>
<th>Product</th>
<th>2010H1</th>
<th>2010H2</th>
<th>Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subprime Fixed</td>
<td>3.6</td>
<td>4.1</td>
<td>0.5</td>
</tr>
<tr>
<td>Subprime ARM 2/28</td>
<td>0.8</td>
<td>1.6</td>
<td>0.8</td>
</tr>
<tr>
<td>Subprime ARM 3/27</td>
<td>1.4</td>
<td>2.0</td>
<td>0.6</td>
</tr>
<tr>
<td>Subprime ARM 5/25</td>
<td>2.9</td>
<td>3.3</td>
<td>0.4</td>
</tr>
</tbody>
</table>

Source: Loan Performance, Freddie Mac

- Subprime borrowers can prepay when house price rises
 - Credit curing
 - Cash-out refi
- Post-housing crisis, prepayment speeds very low
- Speeds not responsive to rate movements

Model based on historical data no longer applicable: using scenario analysis
Model validation and model risk

Severity model: selection problem from using state-level house price

- Model was estimated using zip-level HPI
- For projection, using state HPI forecasts
- Forecasted severities tend to be lower than recent actual severities
- Why? Selection problem: recent defaults tend to concentrate in zips with worse house price decline
- Solution: quantify the potential bias and make adjustment to model forecasts accordingly
Model validation and model risk

Data integrity: OTS vs MBA definitions of delinquency status

- Intex data: the delinquency status reported by servicers can be either OTS and MBA convention
- OTS: D30 means missing two payments
- MTA: D30 means missing one payment
- Model should be able to distinguish the two conventions
- Solution: determining OTS/MBA convention based on trustee reports and other data sources
Model validation and model risk

System implementation risks:

- Coding errors in model implementation
- Wrong parameter files deployed or not mapped correctly to products
- Model inputs not correct
- Model outputs not correctly consumed by downstream processes
Model validation and model risk

Model governance framework

• Model inventory
 o Model definition
 o Model vs Model Use
 o Model risk rating

• Model development reviews

• On-going model risk assessment: model risk reports
 o Assessment on existing model risks
 o Identification of new and emerging model risks
 o Performance monitoring
 o Threshold design

• Model change reviews

• Model new use reviews